Analysing Categorical Outcomes and Logistic Regression with R
This practical half-day workshop will help participants to develop an understanding of the principles, methods, and interpretation of logistic regression, a statistical technique to generate binary (yes/no) outcomes from complex input data. The course will cover the principles of logistic regression and includes practical sessions getting hands-on experience of logistic regression in R.
Recommended Participants
Researchers who are dealing with binary outcome data, and wish to understand how to analyse them effectively. The workshop is relevant for all disciplines, although examples and exercises will focus on biological datasets.
Prior expertise with R and the command line interface is required to a level equivalent to that provided by the R for Reproducible Scientific Analysis workshop, as the basics of R will not be covered. Participants are also expected to have a basic familiarity with the concepts of statistical hypothesis testing and regression
analysis.
Syllabus
Introduction to the analysis of categorical variables
The principles of logistic regression
Performing univariate and multivariate logistic regression in R
Assessing the fit of a logistic regression model
Assumptions, errors, and what can go wrong in logistic regression
Learning Objectives
Recognise datasets suitable for logistic regression and formulate appropriate research questions
Understand the principles of logistic regression methods
Carry out logistic regression analysis using R
Interpret and evaluate logistic regression output from R
Upcoming workshops
EVENTS
NEWS